

	(1) Share of Aged 7%	(2) Share of Aged 14%	Period between (1) and (2)
	Aging Society	Aged Society	
Japan	1970	1994	24
South Korea	1999	2017	18
Hong Kong	1983	2014	31
Singapore	2000	2016	16
Thailand	2005	2027	22
Malaysia	2019	2044	25
Indonesia	2019	2041	22
Philippines	2026	2049	23
China	2001	2026	25

	(1) Share of Aged 7%	(2) Share of Aged 14%	Period between (1) and (2)
	Aging Society	Aged Society	
Japan	1970	1994	24
South Korea	1999	2017	18
Hong Kong	1983	2014	31
Singapore	2000	2016	16
Thailand	2005	2027	22
Malaysia	2019	2044	25
Indonesia	2019	2041	22
Philippines	2026	2049	23
China	2001	2026	25

• In steady state:

$$y_i(t) = \left(\frac{s_{K_i}}{n_i + g_A + \delta}\right)^{\frac{\alpha}{1-\alpha}} h_i A_i(t).$$

• In relative terms (USA=1):

$$y_i(t) = \xi_{K_i}^{\frac{\alpha}{1-\alpha}} h_i A_i(t),$$

where $y_i \equiv \frac{y_i(t)}{y_{US}(t)}$, $\xi_{K_i} \equiv \frac{\xi_{K_i}}{\xi_{KUS}}$, $h_i \equiv \frac{h_i}{h_{US}}$, $A_i \equiv \frac{A_i(t)}{A_{US}(t)}$, and $\xi_{K_i} \equiv \frac{s_{K_i}}{n_i + g_A + \delta}$.

Simulations Scenarios μ_i(t) = ξ^{a/μα}/_{Ki}h_iA_i(t), Inputs Convergence What if developing countries had the same level of equipment and skills but keep their own level of technology? TFP Convergence What if developing countries had the same level of technology but keep their equipment and skills fixed?

